Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene regulatory programmes of tissue regeneration

Abstract

Regeneration is the process by which organisms replace lost or damaged tissue, and regenerative capacity can vary greatly among species, tissues and life stages. Tissue regeneration shares certain hallmarks of embryonic development, in that lineage-specific factors can be repurposed upon injury to initiate morphogenesis; however, many differences exist between regeneration and embryogenesis. Recent studies of regenerating tissues in laboratory model organisms — such as acoel worms, frogs, fish and mice — have revealed that chromatin structure, dedicated enhancers and transcriptional networks are regulated in a context-specific manner to control key gene expression programmes. A deeper mechanistic understanding of the gene regulatory networks of regeneration pathways might ultimately enable their targeted reactivation as a means to treat human injuries and degenerative diseases. In this Review, we consider the regeneration of body parts across a range of tissues and species to explore common themes and potentially exploitable elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of tissue patterning events during ontogenetic and regenerative development.
Fig. 2: Relationship between genetic programmes of regeneration and embryogenesis.
Fig. 3: Discovering DNA regulatory elements involved in regeneration.
Fig. 4: Chromatin dynamics in regeneration.
Fig. 5: Phase transitions and injury-induced regeneration programmes.

Similar content being viewed by others

References

  1. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 11, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mokalled, M. H. & Poss, K. D. A regeneration toolkit. Dev. Cell 47, 267–280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rafii, S., Butler, J. M. & Ding, B.-S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wells, J. M. & Watt, F. M. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557, 322–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Wosczyna, M. N. & Rando, T. A. A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev. Cell 46, 135–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wagner, D. E., Wang, I. E. & Reddien, P. W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Knopf, F. et al. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev. Cell 20, 713–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Salinero, J. M. & Rafii, S. Endothelial cell adaptation in regeneration. Science 362, 1116–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Naik, S., Larsen, S. B., Cowley, C. J. & Fuchs, E. Two to tango: dialog between immunity and stem cells in health and disease. Cell 175, 908–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stevens, K. R. & Murry, C. E. Human pluripotent stem cell-derived engineered tissues: clinical considerations. Cell Stem Cell 22, 294–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Fausett, B. V. & Goldman, D. A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J. Neurosci. 26, 6303–6313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ransom, R. C. et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature 563, 514–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Honkoop, H. et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 8, 98 (2019).

    Article  Google Scholar 

  18. Kumar, A., Gates, P. B. & Brockes, J. P. Positional identity of adult stem cells in salamander limb regeneration. C. R. Biol. 330, 485–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 1–20 (2018).

    Article  CAS  Google Scholar 

  20. Blassberg, R. A., Garza-Garcia, A., Janmohamed, A., Gates, P. B. & Brockes, J. P. Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration. J. Cell Sci. 124, 47–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Elewa, A. et al. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat. Commun. 8, 2286–2289 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gerber, T. et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362, eaaq0681 (2018). This study uses single-cell transcriptome sequencing of connective tissue in regenerating axolotl limbs to detect a regeneration gene signature that precedes the emergence of an embryonic-like gene expression programme.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Aztekin, C. et al. Identification of a regeneration-organizing cell in the Xenopus tail. Science 364, 653–658 (2019). By using a time series between regenerative and non-regenerative stages in Xenopus, the authors uncover a regeneration-specific gene expression signature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oulhen, N. et al. Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech. Dev. 142, 10–21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Storer, M. A. et al. Acquisition of a unique mesenchymal precursor-like blastema state underlies successful adult mammalian digit tip regeneration. Dev. Cell 52, 509–524 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta, V. et al. An injury-responsive gata4 program shapes the zebrafish cardiac ventricle. Curr. Biol. 23, 1221–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schindler, Y. L. et al. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141, 3112–3122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oka, T., Xu, J. & Molkentin, J. D. Re-employment of developmental transcription factors in adult heart disease. Semin. Cell Dev. Biol. 18, 117–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Bisping, E. et al. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc. Natl Acad. Sci. USA 103, 14471–14476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong, A. Y. & Whited, J. L. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 147, dev181636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Catarino, R. R. & Stark, A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 32, 202–223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 1–27 (2018).

    Article  CAS  Google Scholar 

  34. Farley, E. K. et al. Suboptimization of developmental enhancers. Science 350, 325–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang, J. et al. Modulation of tissue repair by regeneration enhancer elements. Nature 532, 201–206 (2016). This article reveals regeneration-responsive transcriptional enhancers and shows that they can be adapted to deliver pro-regenerative factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldman, J. A. et al. Resolving heart regeneration by replacement histone profiling. Dev. Cell 40, 392–404.e5 (2017). This study uses a transgenic histone-tagging approach to identify and validate many regeneration-responsive enhancer elements that are relevant to cardiomyocyte regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pfefferli, C. & Jaźwińska, A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat. Commun. 8, 15151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vizcaya-Molina, E. et al. Damage-responsive elements in Drosophila regeneration. Genome Res. 28, 1852–1866 (2018). This work profiles the enhancers from Drosophila imaginal discs that are active during regeneration and compares them to those in embryonic development and from other regeneration models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363, eaau6173 (2019). This article describes egr1 as a pioneer transcription factor and possible master regulator required for whole-body regeneration in the acoel worm, Hofstenia miamia.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, N. et al. Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 8, 455 (2019).

    Article  Google Scholar 

  41. Ishihara, H. et al. Primed histone demethylation regulates shoot regenerative competency. Nat. Commun. 10, 1786 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hewitt, K. J. et al. GATA factor-regulated Samd14 enhancer confers red blood cell regeneration and survival in severe anemia. Dev. Cell 42, 213–225.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Soukup, A. A. et al. Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer. J. Clin. Invest. 129, 1180–1192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harris, R. E., Setiawan, L., Saul, J. & Hariharan, I. K. Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. eLife 5, 49 (2016). This study describes Polycomb-mediated decommissioning of an embryonic enhancer that limits regenerative capacity in Drosophila imaginal discs.

    Google Scholar 

  45. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ivankovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Cary, G. A., Wolff, A., Zueva, O., Pattinato, J. & Hinman, V. F. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol. 17, 16–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Iwafuchi-Doi, M. & Zaret, K. S. Cell fate control by pioneer transcription factors. Development 143, 1833–1837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keyes, B. E. & Fuchs, E. Stem cells: aging and transcriptional fingerprints. J. Cell Biol. 217, 79–92 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, Z. et al. Hoxc-dependent mesenchymal niche heterogeneity drives regional hair follicle regeneration. Cell Stem Cell 23, 487–500.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Bernardos, R. L., Barthel, L. K., Meyers, J. R. & Raymond, P. A. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci. 27, 7028–7040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramachandran, R., Reifler, A., Parent, J. M. & Goldman, D. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J. Comp. Neurol. 518, 4196–4212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ito, K. et al. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev. Dyn. 243, 1106–1115 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Lust, K. & Wittbrodt, J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. eLife 7, 7028 (2018).

    Article  Google Scholar 

  56. Gadye, L. et al. Injury activates transient olfactory stem cell states with diverse lineage capacities. Cell Stem Cell 21, 775–790.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rocha-Martins, M. et al. De novo genesis of retinal ganglion cells by targeted expression of Klf4 in vivo. Development 146, dev176586 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marshall, L. N. et al. Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc. Natl Acad. Sci. USA 116, 3614–3623 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, F.-X. & Guan, K.-L. The Hippo pathway: regulators and regulations. Genes Dev. 27, 355–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA 109, 2394–2399 (2012).

    Article  Google Scholar 

  69. Wang, J., Liu, S., Heallen, T. & Martin, J. F. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15, 1–684 (2018).

    Article  CAS  Google Scholar 

  70. Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779.e7 (2019). Combined with Sun et al., Li et al. and Chang et al., this work suggests a model in which mechanical transduction initiates chromatin reprogramming by the combined action of Swi/Snf and YAP signalling during liver and heart regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schuettengruber, B. & Cavalli, G. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136, 3531–3542 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Narlikar, G. J., Fan, H.-Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ben-Yair, R. et al. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development 146, dev178632 (2019). This work shows that Polycomb activity can be pro-regenerative by promoting dedifferentiation through silencing sarcomeric genes in muscle.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maki, N., Tsonis, P. A. & Agata, K. Changes in global histone modifications during dedifferentiation in newt lens regeneration. Mol. Vis. 16, 1893–1897 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahmad, K. & Henikoff, S. Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104, 839–847 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fan, X. et al. Dynamic alterations to α-actinin accompanying sarcomere disassembly and reassembly during cardiomyocyte mitosis. PLoS One 10, e0129176 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Dai, Y.-S., Cserjesi, P., Markham, B. E. & Molkentin, J. D. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J. Biol. Chem. 277, 24390–24398 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Samarajeewa, A. et al. Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea. Development 145, dev166579 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hariharan, I. K. & Serras, F. Imaginal disc regeneration takes flight. Curr. Opin. Cell Biol. 48, 10–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pengelly, A. R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Quaife-Ryan, G. A. et al. Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136, 1123–1139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sif, S., Stukenberg, P. T., Kirschner, M. W. & Kingston, R. E. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12, 2842–2851 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).

    Article  PubMed  CAS  Google Scholar 

  89. Jen, H.-I. et al. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 8, e44328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palacios, D. et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7, 455–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Katsuyama, T. & Paro, R. Epigenetic reprogramming during tissue regeneration. FEBS Lett. 585, 1617–1624 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Shaw, T. & Martin, P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 10, 881–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stewart, S., Tsun, Z.-Y. & Izpisua Belmonte, J. C. A histone demethylase is necessary for regeneration in zebrafish. Proc. Natl Acad. Sci. USA 106, 19889–19894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, B. et al. Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell 21, 761–774.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, S. et al. Epigenetic compensation promotes liver regeneration. Dev. Cell 50, 43–56.e6 (2019). This work shows that disruption of DNA methylation by the knockout of Uhrf1 in mice inhibits normal Polycomb function by redistributing this function as a means to compensate for silencing of transposons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mallen-St Clair, J. et al. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 26, 439–444 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ai, S. et al. Divergent requirements for EZH1 in heart development versus regeneration. Circ. Res. 121, 106–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fowler, T., Sen, R. & Roy, A. L. Regulation of primary response genes. Mol. Cell 44, 348–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Balamotis, M. A. et al. Complexity in transcription control at the activation domain-mediator interface. Sci. Signal. 2, ra20–ra20 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Stem Cell 18, 456–466 (2016).

    CAS  Google Scholar 

  102. Li, W. et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Stem Cell 25, 54–68.e5 (2019).

    CAS  Google Scholar 

  103. Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621.e12 (2019). This study shows that heterozygous mutations in chromatin-activating complexes can foster regeneration in mammalian livers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moya, I. M. & Halder, G. Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 1–16 (2019).

    Article  CAS  Google Scholar 

  106. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cao, J. et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell 42, 600–615.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Tanaka, E. M. The molecular and cellular choreography of appendage regeneration. Cell 165, 1598–1608 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Wehner, D. & Weidinger, G. Signaling networks organizing regenerative growth of the zebrafish fin. Trends Genet. 31, 336–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Hancock, M. L. et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177, 722–736.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Apel, P. J. et al. Effect of locally delivered IGF-1 on nerve regeneration during aging: an experimental study in rats. Muscle Nerve 41, 335–341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barton, E. R., Morris, L., Musaro, A., Rosenthal, N. & Sweeney, H. L. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J. Cell Biol. 157, 137–148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chablais, F. & Jaźwińska, A. IGF signaling between blastema and wound epidermis is required for fin regeneration. Development 137, 871–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Choi, W.-Y. et al. In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140, 660–666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Desbois-Mouthon, C. et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J. 20, 773–775 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin α promoter choice. Cell 177, 639–653.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Swarr, D. T. et al. The long noncoding RNA Falcor regulates Foxa2 expression to maintain lung epithelial homeostasis and promote regeneration. Genes Dev. 33, 656–668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shim, S., Kwan, K. Y., Li, M., Lefebvre, V. & Sestan, N. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perry, R. B.-T., Hezroni, H., Goldrich, M. J. & Ulitsky, I. Regulation of neuroregeneration by long noncoding RNAs. Mol. Cell 72, 553–567.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, X. et al. Long non-coding RNAs regulate Wnt signaling during feather regeneration. Development 145, dev162388 (2018).

    Article  PubMed  CAS  Google Scholar 

  123. Boos, F. et al. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21, 442–451 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Guo, A. et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362, eaan3303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mundorf, J., Donohoe, C. D., McClure, C. D., Southall, T. D. & Uhlirova, M. Ets21c governs tissue renewal, stress tolerance, and aging in the Drosophila intestine. Cell Rep. 27, 3019–3033.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jessen, K. R., Mirsky, R. & Arthur-Farraj, P. The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev. Cell 34, 613–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arthur-Farraj, P. J. et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633–647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Papp, B. & Plath, K. Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324–1343 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schuster, K. J. & Smith-Bolton, R. K. Taranis protects regenerating tissue from fate changes induced by the wound response in Drosophila. Dev. Cell 34, 119–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Worley, M. I., Alexander, L. A. & Hariharan, I. K. CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. eLife 7, 487 (2018).

    Article  Google Scholar 

  134. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gehani, S. S. et al. Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol. Cell 39, 886–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Lau, P. N. I. & Cheung, P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc. Natl Acad. Sci. USA 108, 2801–2806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu, C.-C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).

    Article  PubMed  CAS  Google Scholar 

  140. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hainer, S. J., Bošković, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Profiling of pluripotency factors in single cells and early embryos. Cell 177, 1319–1329.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  CAS  Google Scholar 

  149. Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Annu. Rev. Med. 70, 273–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Chicoine, L. G. et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol. Ther. 22, 338–347 (2016).

    Article  CAS  Google Scholar 

  152. Recino, A. et al. Immunosuppression overcomes insulin- and vector-specific immune responses that limit efficacy of AAV2/8-mediated insulin gene therapy in NOD mice. Gene Ther. 26, 40–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Trapani, I. Adeno-associated viral vectors as a tool for large gene delivery to the retina. Genes 10, 287 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  154. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Davidsson, M. et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc. Natl Acad. Sci. USA 116, 27053–27062 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  156. Bracken, A. P., Brien, G. L. & Verrijzer, C. P. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev. 33, 936–959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Venable, J. H. Constant cell populations in normal, testosterone-deprived and testosterone-stimulated levator ani muscles. Am. J. Anat. 119, 263–270 (1966).

    Article  CAS  PubMed  Google Scholar 

  158. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Carr, M. J. et al. Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration. Cell Stem Cell 24, 240–256.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A. & Brockes, J. P. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thornton, C. S. The effect of apical cap removal on limb regeneration in Amblystoma larvae. J. Exp. Zool. 134, 357–381 (1957).

    Article  CAS  PubMed  Google Scholar 

  163. Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Siebert, S. et al. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365, eaav9314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Matsumoto, T., Wakefield, L., Tarlow, B. D. & Grompe, M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26, 34–47.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. González-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Lucchetta, E. M. & Ohlstein, B. Amitosis of polyploid cells regenerates functional stem cells in the Drosophila intestine. Cell Stem Cell 20, 609–620.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Lee for contributions to the artwork in this Review. We thank A. Burghes, B. Blaser and C. Lepper for discussions, and J. Kang, V. Cigliola and M. Mokalled for comments on the manuscript. We apologize to colleagues in the field if the depth of the discussion of their work was limited as a result of space constraints. J.A.G. acknowledges funding from the American Heart Association (AHA) (17SDG33660922) and Ohio State University. K.D.P. acknowledges funding from the National Institutes of Health (R01HL136182, R01AR076342, R35HL150713), AHA and Fondation Leducq.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Joseph A. Goldman or Kenneth D. Poss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks I. Hariharan and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Repatterning

The recapitulation of previous arrangements of cell types during regrowth.

Patterning

The developmental process by which cells acquire their identities, depending on their relative spatial positions within the embryo.

Ontogenetic

Relating to the developmental history of an organism from fertilization to adulthood.

Blastema

A mass of proliferative cells that forms at the salamander limb stump after amputation, ultimately giving rise to the new limb structures. Additional regeneration contexts in other species and tissues similarly invoke a blastema.

Dedifferentiate

Of a cell, to lose lineage-restricted characteristics, perhaps adopting a more developmentally primitive status.

Enhancer discovery

Classically, enhancers are validated using assays in which the test region is removed from its normal location and engineered into a heterologous context using reporters. Measures of endogenous enhancer activity have centred on scanning the accessibility of their chromatin, but CRISPR technology has made loss-of-function experiments feasible in virtually all lab model systems, enabling new definitions of enhancers based on function in vivo.

Sequencing depth

The number of high-throughput sequencing reads per given sample, indicative of the abundance of a transcript or chromatin feature.

Assay for transposase-accessible chromatin using sequencing

(ATAC-seq). In vitro assay for chromatin accessibility that measures the ability of a transposase to access the underlying DNA.

Pioneer factor

A transcription factor that directly binds nucleosomes and can therefore initiate gene regulation from a previously silenced state.

Reprogramming

The process of conversion from a committed cell type to a different cell type.

Karyokinesis

The division of nuclei after mitosis to compartmentalize the two daughter genomes.

Endoreplication

An incomplete form of mitosis in which the genome is replicated but the daughter cells never physically separate, leading to polyploidy.

Polyploid

A state in which cells have an increasing number of paired chromosomes beyond the normal 2N (for example, 4N, 8N, and so forth).

Immediate–early gene

(IEG). A gene that is activated rapidly because it does not require an intervening transcription event to produce already-poised activating factors.

Autotomy

Regulated removal of a body part as a defence mechanism — for example, a lizard losing its tail to escape a predator.

Jaw distraction

A surgical method for lengthening the jaw by cutting bone and resetting it more distally.

Karyolymph

The contents of the nucleus, including chromatin, nuclear fluid and particulate condensates such as the nucleolus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, J.A., Poss, K.D. Gene regulatory programmes of tissue regeneration. Nat Rev Genet 21, 511–525 (2020). https://doi.org/10.1038/s41576-020-0239-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0239-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing